read.csv())dplyr function (filter(), summarize(), etc.)dplyr and ggplot2
dplyr and ggplot2.
ggplot()aes()geom_line()geom_bar()geom_smooth()geom_point()geom_boxplot()geom_smooth()facet_grid()facet_wrap()scale_manual()lims()labs()guide_legend()theme()How do I…
dplyrggplot2help(), vignette tutorials, and online documentationdplyr and ggplot2dplyr and ggplot2data.frame, graphic) corresponding to
the desired code solution.dplyr review will be necessary (15 min allotted below)read.csv())str(), head())dplyr Recapselect()filter()group_by()summarize()Africa <- filter(data, continent=="Africa")
A. 5
B. 38
C. 52
D. 142“Make a data.frame that stores the count of countries per continent?”
count_countries <- data %>%
group_by(continent) %>%
summarize(countries = n())
> count_countries
Source: local data frame [5 x 2]
continent countries
(fctr) (int)
1 Africa 52
2 Americas 25
3 Asia 33
4 Europe 30
5 Oceania 2
ggplot: Grammar of GraphicsParsons Problem with components and form of ggplot2
geom_histogram() +
labs(x = "Log10( 2007 Population )", y = "Count")
ggplot(Africa, aes(log10(pop_2007))) +
geom_histogram(), geom_density()Faded Problem
ggplot(Africa, aes(________, ..count..)) +
geom_density() ________
labs(x = "Log10(________)", y = "Count")
labs()theme()Faded Problem Continued
ggplot(________) +
________ +
labs(________, y = "Count") +
theme_classic(base_size = 24, base_family = ________) +
theme(axis.title = element_text(size = 36))
geom_point(), geom_smooth()scale_manual()Parsons Problem with blanks
ggplot(data, aes(x = ________, y = ________, size = pop_2007)) +
geom_point() +
theme_classic()
geom_smooth() +
labs(x = ________, y = ________, size = "Population", title = "2007") +
Faded Problem
ggplot(data, aes(________)) +
geom_smooth(method = ________, color = "black", size = 2) +
geom_point() +
scale_size(range = c(________)) +
scale_x_log10() +
labs(x = "GDP/capita [adjusted US$]", y = "Life Expectancy [years]",
size = "Population [millions]", title = "2007") +
theme_classic(________) +
theme(axis.title = ________)
Faded Problem: get data.frame near to ‘Faceted Table’
pop_by_continent <- ________ %>%
gather(year, population, ________) %>%
separate(________, c("pop", "year"), sep = "_") %>%
select(continent, country, ________, ________)
Faded Problem: subset data for 2007
pop_2007 <- filter(________)
facet_grid()lims()Fix the Code
ggplot(pop_2007, aes(year)) +
geom_histogram(binwidth=0.5) +
scale_x_log10(limits = c(0.1, 10))
facet_grid(continent ~ .) +
labs(x = Population [millions], y = Number of countries,
title = "2007") +
theme_bw(base_size = 42, base_family = "Script") +
theme(axis.title=element_text(size=36))
geom_line(), geom_area()guide_legend()geom_line() to
geom_area() and add labels and theme layers.ggplot2