

Lessons and Objectives

Writing Lessons

- Theme so far start at the end
 - MCQs misconceptions
 - Faded examples remove bits from full example
- Writing lessons is the same
 - Know your audience, what you want them to learn
 - Work backwards from that

Writing Learning Objectives

- Single sentence describing what learner will be *able to do* after a lesson
 - To demonstrate learning
- Should be specific and verifiable, with
 - Measurable/verifiable verb what learner will do
 - Criteria for acceptable performance
- Also need to understand what kind of learning we are aiming for

Bloom's Taxonomy

Bloom's Taxonomy	Examples
Knowledge: recalling learned information	'for' starts a loop in Python
Comprehension: explaining the meaning of information	describing how a for loop works
Application: applying what one knows to novel, concrete situations	writing a for loop to rename files in Unix shell Our focu .
Analysis: breaking down a whole into component parts and explaining how each part contributes	explaining how loop body, loop variable and collection relate
Synthesis: assembling components to form a new and integrated whole	using a while/repeat until loop works based on for knowledge
Evaluation: using evidence to make judgments about relative merits of ideas and materials	pros of cons of for loops vs. while loops

 Each level represents a deeper understanding and greater ability to apply it

Links to Software/Data Carpentry lessons at top of Etherpad.

Take a minute to **select one learning objective** from one of those lessons, then complete the following steps to **evaluate it and reword it to make it sharper**

- **1.** *Identify* the learning objective verb.
- **2. Decide** what type of learning outcome this applies to (i.e. comprehension, application, evaluation).
- **3. Reword** the learning objective for a different learning outcome (e.g., from application to knowledge based outcome or vice versa).
- **4.** Pair up to discuss your rewording or help each other with point 2 or 3 if necessary.
- **5.** *Share* the original and your re-worded learning objectives in the Etherpad.

How are Courses Mostly Designed?

- Someone tells you to teach something you haven't thought about in ten years
- 2. You start writing slides to explain what you know about the subject
- After two or three weeks, you make up an assignment based more or less on what you've taught so far
- 4. You repeat step 3 several times
- 5. You stay up late to make up a final exam

Reverse Instructional Design (RID)

- Similar to Test-Driven Development (TDD)
- 1. Identify what is worth learning
 - e.g. via concept maps
- 2. Decide what constitutes evidence that learning has taken place
 - Create final exam or other summative assessment
- 3. Design practice work to prepare learners for summative assessment
 - In-class formative assessments
 - Out of class exercises
- 4. Sort practices in order of increasing complexity
- 5. Write short episodes to close the gap between what learners know and what they need to know in order to do each one
 - Classroom lesson consists of several such episodes
 - Each episode builds toward quick formative assessment

Keeps teaching focused on its objectives Ensures learners prepared for final exam

- Most commonly used
 - The Unix Shell
 - Version Control with Git
 - Programming with Python
 - Programming with R
 - R for Reproducible Scientific Analysis
- Others
 - Version Control with Mercurial
 - Using Databases with SQL
 - Programming with MATLAB
 - Automation and Make

- Most commonly used
 - The Unix Shell
 - Version Control with Git
 - Programming with Python
 - Programming with R
 - R for Reproducible Scientific Analysis
- Others
 - Version Control with Mercurial
 - Using Databases with SQL
 - Programming with MATLAB
 - Automation and Make

Main aims

Teach a few basic concepts that crop up in many areas of computing:

- Path, home directory
- History, tab completion
- head, tail, grep
- Using pipes
- Using loops

- Most commonly used
 - The Unix Shell
 - Version Control with Git
 - Programming with Python
 - Programming with R
 - R for Reproducible Scientific Analysis
- Others
 - Version Control with Mercurial
 - Using Databases with SQL
 - Programming with MATLAB
 - Automation and Make

Main aims

To teach:

- How to keep track of work
- How to collaborate with other people online
- Enough about privacy and licensing to make sensible decisions

- Most commonly used
 - The Unix Shell
 - Version Control with Git
 - Programming with Python
 - Programming with R
 - R for Reproducible Scientific Analysis
- Others
 - Version Control with Mercurial
 - Using Databases with SQL
 - Programming with MATLAB
 - Automation and Make

Main aims

To teach building modular programs out of small functions that can be

- Read
- Tested
- Re-used

Hard to teach to novices

Focus on mechanics of doing common operations

Data Carpentry Lessons – In Practice

- Domain-specific
- Cover aspects of data relevant to domain
 - Organisation, analysis, manipulation, visualising tabular data
- Current domains include
 - Ecology, Genomics, Geospatial Data
- Others in development and testing
 - Social Science, semester-long Biology course