
F1000Research

Open Peer Review

, Aalto University FinlandJuha Sorva

, University of Rochester USAPhilip Guo

, National EvolutionaryHilmar Lapp

Synthesis Center (NESCent) USA

Discuss this article

 (2)Comments

3

2

1

COMMENTARY

 Software Carpentry: lessons learned [version 2; referees:
3 approved]
Greg Wilson
Software Carpentry Foundation, Austin, TX, USA

Abstract
Since its start in 1998, Software Carpentry has evolved from a week-long
training course at the US national laboratories into a worldwide volunteer effort
to improve researchers' computing skills. This paper explains what we have
learned along the way, the challenges we now face, and our plans for the
future.

 Greg Wilson ()Corresponding author: gvwilson@software-carpentry.org
 Wilson G. 2016, :62 (doi: How to cite this article: Software Carpentry: lessons learned [version 2; referees: 3 approved] F1000Research 3

)10.12688/f1000research.3-62.v2
 © 2016 Wilson G. This is an open access article distributed under the terms of the , whichCopyright: Creative Commons Attribution Licence

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Data associated with the article
are available under the terms of the (CC0 1.0 Public domain dedication).Creative Commons Zero "No rights reserved" data waiver

 Software Carpentry is not currently supported by grants. Grant information:

 Competing interests: The author is an employee of the Software Carpentry Foundation. Over the years, Software Carpentry has received support
from the organizations listed in Section 2.3 and Table 1, and from The Mathworks, Enthought Inc., Continuum Analytics, the Sloan Foundation, and
the Mozilla Foundation.

 19 Feb 2014, :62 (doi:) First published: 3 10.12688/f1000research.3-62.v1

 Referee Status:

 Invited Referees

version 2
published
28 Jan 2016

version 1
published
19 Feb 2014

 1 2 3

report report report

 19 Feb 2014, :62 (doi:)First published: 3 10.12688/f1000research.3-62.v1
 28 Jan 2016, :62 (doi:)Latest published: 3 10.12688/f1000research.3-62.v2

v2

Page 1 of 24

F1000Research 2016, 3:62 Last updated: 17 FEB 2016

http://f1000research.com/articles/3-62/v2
http://dx.doi.org/10.12688/f1000research.3-62.v2
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://dx.doi.org/10.12688/f1000research.3-62.v1
http://f1000research.com/articles/3-62/v2
http://f1000research.com/articles/3-62/v1
http://dx.doi.org/10.12688/f1000research.3-62.v1
http://dx.doi.org/10.12688/f1000research.3-62.v2
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.3-62.v2&domain=pdf&date_stamp=2016-01-28

1 Introduction
In January 2012, John Cook posted this to his widely-read blog1:

In a review of linear programming solvers from 1987 to
2002, Bob Bixby says that solvers benefited as much from
algorithm improvements as from Moore’s law: “Three orders
of magnitude in machine speed and three orders of magni-
tude in algorithmic speed add up to six orders of magnitude
in solving power. A model that might have taken a year to
solve 10 years ago can now solve in less than 30 seconds.”

A million-fold speed-up is impressive, but hardware and algorithms
are only two sides of the iron triangle of programming. The third is
programming itself, and while improvements to languages, tools,
and practices have undoubtedly made software developers more pro-
ductive since 1987, the speed-up is percentages rather than orders
of magnitude. Setting aside the minority who do high-performance
computing (HPC), the time it takes the “desktop majority” of scien-
tists to produce a new result is frequently dominated by how long it
takes to write, test, debug, install, and maintain software.

The problem is that most scientists are never taught how to do this.
Their undergraduate programs may include a generic introduction to
programming or a statistics or numerical methods course (in which
they are often expected to pick up programming on their own), but
they are almost never told that version control exists, and rarely if ever
shown how to structure a maintainable program, or how to turn the
last twenty commands they typed into a re-usable script. As a result,
they routinely spend hours doing things that could be done in minutes,
or don’t do things at all because they don’t know where to start2,3.

This is where Software Carpentry comes in. We ran over 400
workshops for over 12,000 researchers between January 2013 and
July 2015. In them, over 400 volunteer instructors helped attend-
ees learn about program design, task automation, version control,
and other unglamorous but time-tested skills4. Two independent

assessments in 20125,6 and two others more recently7,8 have indicated
that this training is helping (though as we discuss in Section 8.1,
these results are still preliminary):

The program increases participants’ computational under-
standing, as measured by more than a two-fold (130%)
improvement in test scores after the workshop. The program
also enhances their habits and routines, and leads them to
adopt tools and techniques that are considered standard prac-
tice in the software industry. As a result, participants express
extremely high levels of satisfaction with their involvement
in Software Carpentry (85% learned what they hoped to
learn; 95% would recommend the workshop to others).

2 From red to green
Like many projects, it has taken us years to become an overnight
success, and we have made many mistakes along the way. These are
best understood historically.

2.1 Version 1: red light
In 1995–96, the author organized a series of articles in IEEE
Computational Science & Engineering titled, “What Should Com-
puter Scientists Teach to Physical Scientists and Engineers?”9.
These grew out of the frustration he had working with scientists
who wanted to run before they could walk, i.e., to parallelize com-
plex programs that were not broken down into self-contained func-
tions, that did not have any automated tests, and that were not under
version control10.

In response, John Reynders (then director of the Advanced Com-
puting Laboratory at Los Alamos National Laboratory) invited the
author and Brent Gorda (now at Intel) to teach a week-long course
to LANL staff. This course ran for the first time in July 1998, and
was repeated nine times over the next four years. It eventually
wound down as Gorda and the author moved on to other projects,
but two valuable lessons were learned:

1.	 Intensive week-long courses are easy to schedule (particu-
larly if instructors have to travel) but by the last two days,
attendees’ brains are full and learning drops off significantly.

2.	 Textbook software engineering is not useful to most sci-
entists. In particular, careful documentation of require-
ments and lots of up-front design are not appropriate for
people who (almost by definition) do not know what the
right answer is yet. Agile development methods (which
rose to prominence during this period) are a less bad fit to
researchers’ needs, but even they are not well suited to the
common “solo grad student” model of working.

2.2 Versions 2 and 3: Another red light
The Software Carpentry course materials were updated and released
in 2004–05 under a Creative Commons license with support from
the Python Software Foundation11. They were used twice in a con-
ventional term-long graduate course at the University of Toronto
aimed at a mix of students from Computer Science and the physical
and life sciences.

       Amendments from Version 1

This revision brings the paper up to date by incorporating changes
made and new lessons learned between early 2014 and the end
of 2015:

* �Described formation of the independent Software Carpentry
Foundation.

* Described formation of our sibling project, Data Carpentry.
* �Updated data on number of workshops, learners, and

instructors over time.
* �Added references to studies of Software Carpentry that have

appeared in the past two years.
* Expanded discussion of the instructor training program.
* �Expanded discussion of teaching methods, and of why better

teaching methods are hard to transfer.
* Described the first publication of our lessons.
* Updated discussion of current challenges and future directions.
* Removed summary of pre-assessment questionnaire.

See referee reports

REVISED

Page 2 of 24

F1000Research 2016, 3:62 Last updated: 17 FEB 2016

The materials attracted 1000–2000 unique visitors a month. But
while graduate students (and the occasional faculty member)
found the course at Toronto useful, it never found an institutional
home. Most Computer Science faculty believe that this basic mate-
rial is too easy to deserve a graduate credit (even though a significant
minority of their students, particularly those coming from non-CS
backgrounds, have no better software development skills than the
average physicist). Meanwhile, other departments believe that
courses like this ought to be offered by Computer Science, in the
same way that Mathematics and Statistics departments routinely
offer service courses. In the absence of an institutional mechanism to
offer credit courses at some inter-departmental level, this course, like
many other interdisciplinary initiatives, was left without a home.

It works too well to be worth teaching

�Most computer scientists want to do research to advance
our understanding of the science of computing; things like
command-line history, tab completion, and “select * from
table” have been around too long, and work too well, to be
interesting. As long as universities reward research first, and
teaching last, it is simply not in most computer scientists’
interests to offer courses like this.

Secondly, despite repeated invitations, other people did not contrib-
ute new material beyond an occasional bug report (a point which we
will return to in Section 6).

The most important lesson, though, was that while many faculty in
science, engineering, and medicine agree that their students should
learn more about computing, they won’t agree on what to take out
of the current curriculum to make room for it. A typical under-
graduate science degree in the US or Canada comprises roughly
1800 hours of class and laboratory time. Anyone who wants to add
more programming, statistics, writing, or anything else must either
lengthen the program (which is financially and institutionally infea-
sible) or take something out. However, everything in the program
is there because it has a passionate defender who thinks it’s vitally
important, and who is likely senior to those faculty advocating the
change.

It adds up

�Saying, “We’ll just add a little computing to every other
course,” is a cheat: five minutes per hour equals four entire
courses in a four-year program, which is unlikely to ever be
implemented. Pushing computing down to the high school
level is also a non-starter, since that curriculum is also full.

The sweet spot for this kind of training is therefore the first years of
graduate school. At that point, students have time to learn (at least,
more time than they’ll have once they’re faculty) and real problems
of their own that they want to solve.

2.3 Version 4: orange light
The author rebooted Software Carpentry in May 2010 with sup-
port from Indiana University, Michigan State University, Microsoft,
MITACS, Queen Mary University of London, Scimatic, SciNet,

SHARCNet, and the UK Met Office. More than 120 short video
lessons were recorded during the subsequent 12 months, and six
week-long classes were run for the backers. We also offered an
online class three times (a MOOC avant la lettre).

This was our most successful version to date, in part because the
scientific landscape itself had changed. Open access publishing,
crowd sourcing, the data deluge in the life sciences, and grow-
ing concern about reproducible research had convinced a grow-
ing number of scientists that knowing how to program was now
as important as knowing how to do statistics. Even most of them,
though, still (rightly) regarded it as a tax they had to pay in order to
get their science done.

Despite this round’s overall success, there were several
disappointments:

1.	 Once again, we discovered that five eight-hour days are
more wearying than enlightening.

2.	 And once again, only a handful of other people contrib-
uted material (see Section 6).

3.	 Creating videos is significantly more work than creating
slides. Editing or modifying them is harder still: while a
typo in a slide can be fixed by opening PowerPoint, mak-
ing the change, saving, and re-exporting the PDF, insert-
ing new slides into a video and updating the soundtrack
seems to take at least half an hour regardless of how
small the change is. This makes maintaining a video-
based course prohibitively expensive.

4.	 Most importantly, the MOOC format didn’t work: only
5–10% of those who started with us completed the course,
and the majority were people who already knew most
of the material. Both figures are in line with completion
rates and learner demographics for other MOOCs12, but
that does not make them less disappointing.

The biggest take-away from this round was the need to come up
with a scalable, sustainable model for delivering training. One
instructor simply can’t reach enough people, and cobbling together
funding from half a dozen different sources every twelve to
eighteen months is risky as well as wearying.

2.4 Version 5: green light
Software Carpentry rebooted again in January 2012 with a grant
from the Sloan Foundation to the Mozilla Foundation. This time,
the model was two-day intensive workshops like those pioneered
by The Hacker Within, a grassroots group of grad students helping
grad students at the University of Wisconsin - Madison.

Shortening the workshops made it possible for more people to
attend, and increased the proportion of the material they could
absorb. It also forced us to think much harder about what skills
scientists really needed. Out went object-oriented programming,
XML, Make, and other topics. Instead, we focused on a small set
of tools that let us introduce higher-level concepts without learners
really noticing (Section 3).

Page 3 of 24

F1000Research 2016, 3:62 Last updated: 17 FEB 2016

Reaching more people allowed us to recruit new instructors from
workshop participants, which in turn allowed us to scale. Switching
to a “host site covers costs” model was equally important: funding
was still needed for 1.5 core staff to lead the project and match
instructors to workshops, but everything else funded itself.

Learning to teach

�One of our most important discoveries during this period
was that many people are as interested in learning about
better teaching practices as they are in learning about
computing. We discuss this in detail in Section 5.

2.5 Version 6: A true community project
In July 2014, the author left Mozilla and set up the Software
Carpentry Foundation, an independent non-profit foundation under
the auspices of NumFOCUS. The SCF held its first elections in
January 2015, in which instructors who had taught over the past two
years selected seven of their own number as a Steering Committee
to oversee the project’s operations. Since then, the SCF has formed
partnerships with a growing number of institutions (see Table 1),
run an ever-increasing number of workshops, and much more.

Table 1. Current Partners (November 2015).

Berkeley Institute for Data Science

Compute Canada

GitHub

Insight Data Science

iPlant

Lawrence Berkeley National Laboratory

Michigan State University

Netherlands eScience Center

New Zealand eScience Infrastructure

Oklahoma State University

RStudio

Software Sustainability Institute

University College London

UCAR

University of California Davis

University of Colorado

University of Florida

University of Leeds

University of Melbourne

University of Michigan

University of Oklahoma

University of Washington

While the SCF is only nine months old, we have already learned
many things. The most important are:

1.	 The first few people to join a volunteer organization are
usually keener than those who join later. As numbers grow,
therefore, the time contributed per person will decrease,
and structures must be designed with this in mind. In
particular, by the time 400 people are involved, most will
be dipping in and out of conversations rather than taking
part on a daily or weekly basis, so frameworks and proce-
dures must become simple and stable.

2.	 Every partner organization has different needs and con-
straints (We have learned much more than we ever wanted
to about accounting rules at various universities. . .).
“Standard” partnership agreements therefore have to be
treated as starting points for negotiation, rather than as
“take it or leave it” propositions.

3.	 “Bikeshedding” is the practice of arguing over minor,
marginal issues while more serious ones are overlooked.
It is a constant danger in an organization whose more
vocal members actually enjoy programming. Squelching
such technical discussions has a chilling effect on con-
versation overall, but letting them go unchecked alienates
people who would rather talk about teaching, or simply
don’t have enough time to go down technical rabbit holes.
We discuss an example in Section 7 and Section 8.4.

2.6 Data Carpentry
The biggest recent development, though, has been the foundation of
a sibling organization called Data Carpentry in April 2014. Where
Software Carpentry’s mission is to help scientists who are pro-
gramming badly to program better, Data Carpentry’s focus is, as its
name implies, to help them manage and analyze their data. Led by
Dr. Tracy Teal, Data Carpentry was recently awarded $700,000 by
the Moore Foundation, and is expected to grow rapidly over the
coming two years.

2.7 Results

Dataset 1. Cumulative Number of Workshops over Time

http://dx.doi.org/10.5256/f1000research.3536.d111654

The cumulative number of Software Carpentry workshops between
November 2011 – October 2015, and the dates they were held.

Dataset 2. Cumulative Number of Workshop Attendees over Time

http://dx.doi.org/10.5256/f1000research.3536.d111655

The cumulative number of people attending Software Carpentry
workshops between November 2011 – October 2015.

Dataset 3. Cumulative Number of Qualified Instructors over Time

http://dx.doi.org/10.5256/f1000research.3536.d111656

The cumulative number of qualified instructors trained between
May 2012 – October 2015.

Page 4 of 24

F1000Research 2016, 3:62 Last updated: 17 FEB 2016

http://dx.doi.org/10.5256/f1000research.3536.d111654
http://dx.doi.org/10.5256/f1000research.3536.d111655
http://dx.doi.org/10.5256/f1000research.3536.d111656

As we discuss in Section 8.1, we do not know how to measure the
impact of our workshops. However, both their number (Figure 1),
and the number of people attending (Figure 2), have grown steadily,
as has the number of instructors (Figure 3).

We are now a truly global organization (Table 3). And most impor-
tantly, feedback from participants is strongly positive. While
there are always problems with software set-up and the speed of
instruction (Section 8.2), 80–90% of attendees typically report that
they were glad they attended and would recommend the workshops
to colleagues.

Figure 1. Cumulative number of workshops.

Figure 2. Cumulative number of learners.

Table 2. Authors per Lesson
(October 2015).

Topic Contributors
Git 55
Mercurial 25
MATLAB 28
Python 52
R 49
Unix Shell 64
SQL 41

Page 5 of 24

F1000Research 2016, 3:62 Last updated: 17 FEB 2016

Figure 3. Cumulative number of instructors.

Table 3. Workshops and Instructors by
Country (October 2015).

Country Workshops Instructors

United States 216 232

Canada 59 52

United Kingdom 43 50

Australia 33 41

Brazil 9 2

South Africa 6 1

New Zealand 5 8

Norway 5 3

Germany 5 9

South Korea 4 1

France 3 3

Poland 3 5

Switzerland 3 0

Italy 2 1

Netherlands 2 0

Spain 2 3

China 1 1

Cyprus 1 0

Denmark 1 2

Finland 1 0

Ghana 1 0

Indonesia 1 0

Jordan 1 0

Lebanon 1 0

Saudi Arabia 1 0

Sweden 1 2

Thailand 1 2

India 0 1

3 What we do
So what does a typical workshop look like?

•	 Day 1 a.m.: The Unix shell. We only show participants
a dozen basic commands; the real aim is to introduce
them to the idea of combining single purpose tools (via
pipes and filters) to achieve desired effects, and to getting
the computer to repeat things (via command completion,
history, and loops) so that people don’t have to.

•	 Day 1 p.m.: Programming in Python, R, or MATLAB.
(Only one language is taught in any given workshop.)
The real goal is to show them when, why, and how to
grow programs step-by-step as a set of comprehensible,
reusable, and testable functions.

•	 Day 2 a.m.: Version control. We begin by emphasiz-
ing how this is a better way to back up files than cre-
ating directories with names like “final”, “really_final”,
“really_final_revised”, and so on, then show them that it’s
also a better way to collaborate than FTP or Dropbox.

•	 Day 2 p.m.: Either more about programming in the work-
shop’s chosen language, or an introduction to databases and
SQL. If the latter is chosen, the real goal is to show them
what structured data actually is (in particular, why atomic
values and keys are important) so that they will understand
why it’s important to store information this way.

As the descriptions above suggest, our real aim isn’t to teach any
specific tool: it’s to teach computational competence. We can’t do
this in the abstract: people won’t show up for a hand-waving talk
about general principles because they won’t believe those princi-
ples will help them meet next Thursday’s deadline. Even if they
do, they won’t understand, because big ideas need to be grounded
in specific examples to be comprehensible. If we show them how
to solve a specific problem with a specific tool, we can then lead

Page 6 of 24

F1000Research 2016, 3:62 Last updated: 17 FEB 2016

into a larger discussion of how scientists ought to develop, use, and
curate software.

There are a lot of local variations around the curriculum shown
above. For example, some instructors use the command-line Python
interpreter, while others prefer the Jupyter Notebook. Still others
teach R or MATLAB instead, while a handful of workshops also
cover tools such as LaTeX, or domain-specific topics such as audio
file processing, depending on the needs of the audience and the
expertise of the instructor.

We aim for no more than 40 people per room at a workshop, so that
every learner can receive personal attention when needed. Where
possible, we run two or more rooms side by side, and use a pre-
assessment questionnaire to stream learners by prior experience,
which simplifies teaching and improves their experience. We do
not shuffle people from one room to another between the first and
second day: with the best inter-instructor coordination in the world,
doing so would result in lost context.

Our workshops are sometimes free, but most now charge a small
registration fee (typically $20–40), primarily because it reduces
the no-show rate from a third to roughly 5%. When this is done,
we must be careful not to trip over institutional rules about
commercial use of their space: some universities will charge hun-
dreds or thousands of dollars per day for use of their classrooms if
any money changes hands. As this is usually several times more than
a small registration fee would bring in, we usually choose the higher
no-show rate as the lesser evil (We have also experimented with
refundable deposits, but the administrative overheads were unsus-
tainable. It also does not help get around the rules mentioned in the
previous paragraph, since money still appears to be changing hands
in the university’s eyes.).

Commercial offerings

�Our material13,14 is all covered by the Creative Commons
Attribution license, so anyone who wants to use it for com-
mercial training can do so without explicit permission from
us. We encourage this: if graduate students can help pay their
bills by sharing what they know, in the way that many pro-
grammers earn their living by working on open source soft-
ware, our community will only be stronger.

�What does require permission is use of our name and logo,
both of which are trademarked. Such permission is granted
automatically if at least one instructor is certified, the work-
shop covers three core topics (the shell, version control, and
a programming language), and the organizers send us sum-
mary information (the dates, the location, and the number
of attendees). We put these rules in place because of people
calling something “Software Carpentry” when they had
nothing to do with what we usually teach. We have worked
hard to create material that actually helps scientists, and to
build some name recognition around it, and we would like to
make sure our name continues to mean something.

Administration fees

�If the Software Carpentry Foundation helps to organize a
workshop (e.g., finds instructors and handles registration)

then we charge the host site a $2500 administration fee. This
fee, which currently provides about a quarter of our revenue,
is routinely waived for workshops in under-served areas and
developing countries. If host sites organize the workshop
themselves, we will still set up registration and send out pre
and post-workshop questionnaires. There is no fee in this
case, but we do ask for a donation (we suggest $500).

As well as instructors, we rely on local helpers to wander the room
and answer questions during practical sessions. These helpers may
be alumni of previous workshops who are interested in becoming
instructors, grad students who have picked up some or all of our
core skills on their own, or members of the local open source com-
munity; where possible, we aim to have at least one helper for every
eight learners.

We find workshops go a lot better if people come in groups (e.g.,
4–5 people from one lab) or have other pre-existing ties (e.g., are
working in the same field). They are less inhibited about asking
questions, and can support each other (morally and technically)
when the time comes to put what they’ve learned into practice
after the workshop is over. Group sign-ups also yield much higher
turnout from groups that are otherwise often under-represented,
such as women and minority students, since they know in advance
that they will be in a supportive environment.

4 Small things add up
As in chess, success in teaching often comes from the accumulation
of seemingly small advantages. Here are a few of the things we do
that we believe have contributed to our success.

4.1 Feedback loops
Giving each learner two sticky notes of different colors allows
instructors to do quick true/false questions as they’re teaching. It
also allows real-time feedback during hands-on work: learners can
put a green sticky note on their laptop when they have something
completed, or a red one when they need help.

We also use them as minute cards: before each break, learners take
a minute to write one thing they’ve learned on the green sticky note,
and one thing they found confusing (or too fast or too slow) on the
red. It only takes a couple of minutes to collate these, and allows the
instructors to adjust to learners’ interests and speed.

We frequently also ask for summary feedback at the end of each
day. The instructors ask the learners to alternately give one positive
and one negative point about the day, without repeating anything
that has already been said. This requirement forces people to say
things they otherwise might not: once all the “safe” feedback has
been given, participants will start saying what they really think.

�Different channels, different messages

�Minute cards are anonymous; the alternating up-and-down
feedback is not. Each mode has its strengths and weak-
nesses, and by providing both, we hope to get the best of
both worlds.

On a longer timescale, we send a post-workshop assessment ques-
tionnaire to attendees shortly after the workshop ends. Response

Page 7 of 24

F1000Research 2016, 3:62 Last updated: 17 FEB 2016

https://jupyter.org/

4.3 Open everything
Our grant proposals, mailing lists, and everything else that isn’t per-
sonally sensitive are out in the open (see 13 for links). We believe that
letting people see us succeed, fail, and learn encourages them to be
more involved in our community, and inspires them to be open as well.

4.4 Open lessons
This is an important special case of the previous point. Anyone who
wants to use our lessons can take what we have, make changes, and
offer those back by sending us a pull request on GitHub. As dis-
cussed in Section 6, this workflow is foreign to most educators, but
allows us to scale and adapt more quickly and more cheaply than
the centralized approaches being taken by many high-profile online
education ventures.

For example, we recently “published” our core lessons through
Zenodo. The number of contributors per lesson is shown in Table 2.
The distribution of contributions has the usual long-tail distribution,
but the fact remains that our lessons have had more contributors
than many “massive” and “open” online courses.

4.5 Use what we teach
We also make a point of eating our own cooking, e.g., we use
GitHub for our web site and to plan workshops. Again, this makes
us more credible, and gives instructors hands-on practice with the
things they’re going to teach. Up until a year ago, the (considerable)
downside to this was that it could be difficult for newcomers to con-
tribute material. We have simplified our templates and build pro-
cedures considerably to fix this, and will be making more changes
early in 2016 to incorporate further insights.

One problem we haven’t solved is the bikeshedding mentioned
earlier. Many contributors would rather spend days tweaking the
build process for lessons rather than an hour coming up with some
new self-test exercises for those same lessons, both because they
are on more familiar ground when debating programming issues,
and because the feedback loop is much tighter. One of our goals for
the coming year is to push the bulk of discussion toward teaching
practices and lesson content.

4.6 Meet the learners on their own ground
Learners tell us that it is important to them to leave the workshop
with their own machine set up to do real work. We therefore con-
tinue to teach on all three major platforms (Linux, Mac OS X, and
Windows), even though it would be simpler to require learners to
use just one (Section 8.3).

We have experimented with virtual machines (VMs) on learners’
computers to reduce installation problems, but those introduce
problems of their own: older or smaller machines simply aren’t
fast enough, and learners often struggle to switch back and forth
between two different sets of keyboard shortcuts for things like
copying and pasting.

Some instructors use VPS over SSH or web browser pages instead.
This solve the installation issues, but makes us dependent on host
institutions’ WiFi (which can be of highly variable quality), and has
the issues mentioned above with things like keyboard shortcuts.

rates vary, but are usually low, and the opt-in nature of the survey
undoubtedly biases the data (Section 8.1). Feedback from instruc-
tors has proven more insightful. In August 2015, for example,
Azalee Bostroem surveyed our instructors to find out what they
were actually teaching about Python (http://software-carpentry.org/
blog/2015/09/thinking-about-teaching.html). From this, we learned
that 60% of our learners are novices with little or no prior program-
ming experience, and that only a third of workshops get through the
entire Python lesson.

Finally, starting in January 2015 we began running biweekly
debriefing sessions for instructors who have recently taught work-
shops, in which they can discuss what they actually did, how it
worked, how the lessons they actually delivered differed from our
templates, what problems arose, and so on. Summaries are posted
shortly after each meeting, and Alistair Walsh recently collected
and posted information about the same Python lesson discussed
above (http://software-carpentry.org/blog/2015/10/python-debrief-
ing-summary.html). We are now (October 2015) beginning a rede-
sign of the lesson to take all this information into account.

4.2 Live coding
We teach via live coding rather than using slides because:

•	 Watching code emerge on the screen is much more con-
vincing than looking at pre-made slides.

•	 It enables instructors to be more responsive to “what if?”
questions.

•	 It facilitates lateral knowledge transfer (e.g., people learn
about keyboard shortcuts and efficient search/replace
strategies in the editor as well as Python).

•	 It slows instructors down: if they have to type in code
as they go along, they can only go twice as fast as their
learners instead of ten times as fast. (And once instruc-
tors get in the habit of saying everything twice—once as
they’re typing, and a second time to recapitulate, pointing
at the screen—most learners are able to keep up.)

•	 Learners get to see instructors’s mistakes and how they
diagnose and fix them. Learners frequently report that
this is the most valuable part of the workshop: as novices,
they’re going to spend most of their time trying to figure
out what’s gone wrong and how to fix it, so it’s very valu-
able to see which parts of error messages instructors pay
attention to, and what steps they take to correct mistakes.

It takes a bit of practice for instructors to get used to thinking aloud
while coding in front of an audience, but most report that it is then
no more difficult to do than talking off a deck of slides.

One device good, two devices better

�Many instructors now use two devices when teaching: a
laptop plugged into the projector for learners to see, and a
tablet beside it on which they can view their notes and the
Etherpad session (Section 4.7). This seems to be more reli-
able than displaying one virtual desktop while flipping back
and forth to another.

Page 8 of 24

F1000Research 2016, 3:62 Last updated: 17 FEB 2016

https://zenodo.org/
http://software-carpentry.org/blog/2015/09/thinking-about-teaching.html
http://software-carpentry.org/blog/2015/09/thinking-about-teaching.html
http://software-carpentry.org/blog/2015/10/python-debriefing-summary.html
http://software-carpentry.org/blog/2015/10/python-debriefing-summary.html

•	 To make their own lives better. Our instructors are often
asked by their colleagues to help with computing prob-
lems. The more those colleagues know, the more interest-
ing those requests are.

•	 To network. Showing up to run a workshop is a great way
for people to introduce themselves to colleagues and make
contact with potential collaborators. This is probably the
most important reason from Software Carpentry’s point
of view, since it’s what makes our model sustainable.

•	 To practice teaching. This is also important to people
contemplating academic careers.

•	 To help diversify the pipeline. Computing is 12–15%
female, and that figure has been dropping since its high
point in the 1980s21. Some of our instructors are involved
in part because they want to help break that cycle by
participating in activities like our workshops for women
in science and engineering.

•	 To learn new things, or learn old things in more detail.
Working alongside an instructor with more experience is
a great way to learn more about the tools, as well as about
teaching.

•	 It’s fun. Our instructors get to work with smart people
who actually want to be in the room, and don’t have to
mark anything afterwards. It’s a refreshing change from
teaching undergraduate calculus. . .

6 Collaborative lesson development
Large-scale ad hoc collaboration is the norm in open source soft-
ware development and the creation of encyclopedia articles, but
is still rare in other fields. In particular, teachers often use one
another’s slide decks as starting points for their own courses, but
rarely offer their changes back to the original author in order to
improve them. This is only partly because educators’ preferred file
formats (Word, PowerPoint, and PDF) aren’t handled gracefully by
existing version control systems. A deeper cause is that there isn’t a
culture of contribution, particularly in higher education.

The question is, why not? Reasons advanced include:

•	 Lack of technical skill. But (a) many teachers edit
Wikipedia, and (b) a large number of those who teach
programming certainly do have the technical skills.

•	 Lack of institutional rewards. But if this was a real bar-
rier, open source software and Wikipedia wouldn’t exist.

•	 Episodic interaction. If someone is teaching a full or half-
year course, they may only revisit the material every six
months to a year, and the context in which it’s taught may
well be different.

•	 It just hasn’t happened yet. This argument might have
been tenable a decade ago, but is less credible with every
passing year.

Our current hypothesis is that teaching is enacted knowledge22,23. To
make a musical analogy, the lesson plan, slides, and assignments

4.7 Collaborative note-taking
We often use Etherpad for collaborative note-taking and to share
snippets of code and small data files with learners. (If nothing else,
it saves us from having to ask students to copy long URLs from
the presenter’s screen to their computers.) It is almost always men-
tioned positively in post-workshop feedback, and several workshop
participants have started using it in their own teaching.

4.8 Pair programming
Pairing is a good practice in real life, and an even better way to
teach: partners can not only help each other out during the practical,
but can also clarify each other’s misconceptions when the solution
is presented, and discuss common research interests during breaks.
To facilitate this, we strongly prefer flat (dinner-style) seating to
banked (theater-style) seating; this also makes it easier for helpers
to reach learners who need assistance.

4.9 Diversity
On June 24–25, 2013, we ran our first workshop for women in sci-
ence, engineering, and medicine. This event attracted 120 learners,
9 instructors, a dozen helpers, and direct sponsorship from several
companies, universities, and non-profit organizations. Our second
such workshop ran in March 2014, and we have done half a dozen
of varying sizes since. While we do occasionally get complaints
(mostly from outsiders) about such events being discriminatory,
they are overwhelmed by the uniformly positive response from
participants, many of whom say that they would probably not have
attended a mixed-gender event because of previous bad experiences
with tech meetups.

5 Instructor training
The instructor training program that we started in August 2012 has
attracted hundreds of participants, and at the time of writing there
are over 400 more on the waiting list. This introduction to mod-
ern research in education and evidence-based teaching practices15
doesn’t just improve our teaching: it also helps give the instructors
a sense of community and purpose.

In its original form, training took 2–4 hours/week of participants’
time for 12–14 weeks (depending on scheduling interruptions);
more recently, we have run it both as a live two-day event, and as a
two-day online event, in which participants are together in groups
of half a dozen or more at one, two, or three sites, while the instruc-
tor takes part over the web.

This training course introduces participants to the basics of educa-
tional psychology, instructional design, and how these things apply
to teaching programming16–20. It is necessarily very shallow, but most
participants find the material interesting as well as useful. Introduc-
ing grad students and faculty to evidence-based teaching practices
may turn out to be Software Carpentry’s greatest contribution.

5.1 Why teach?
But why do people volunteer as instructors?

•	 To make the world a better place. The two things we need
to get through the next hundred years are more science
and more courage; by helping scientists do more in less
time, we are helping with the former.

Page 9 of 24

F1000Research 2016, 3:62 Last updated: 17 FEB 2016

http://etherpad.org/

gh-pages branch of a GitHub repository will be
automatically translated into HTML using a tool called
Jekyll, and those HTML pages will then be published as
a website. This is great—except that Jekyll can’t translate
Jupyter Notebooks or R Markdown files, so we have to
pre-process those and commit the results to the reposi-
tory. We decided that if we’re doing that, we might as
well go the whole way, i.e., generate the HTML ourselves
and commit that to the gh-pages branch rather than run
Jekyll on the server at all.

�Another problem is that many things can only be
expressed in Markdown by using HTML directly. In par-
ticular, there is no way to create div elements to repre-
sent things like callout boxes, exercises, lesson goals, and
so on. We have resorted to using blockquotes for all of
these, with some post-processing and CSS tricks to get
the appearance we want.

Our next step (which we plan to implement in December 2015) is
to take advantage of some of the extra features of one of the dialects
of Markdown that Jekyll supports to solve the styling problem, so
that we can store only the Markdown files in the GitHub repository,
rather than the generated HTML. This will simplify things for new-
comers, but we will still need custom build steps to handle Jupyter
Notebooks, R Markdown, and other file formats, and the intermedi-
ate files produced by those build steps will still need to be kept in
the repository.

Stepping back, what we have learned from wrangling formats is:

1.	 There are no good answers. Every currently-available
option for publishing moderately complex material (such
as lessons and scientific papers) is broken in some way.

2.	 Fixing things is often a mistake. Or rather, fixing things
frequently is: as one of our instructors pointed out in the
summer of 2015, every time he had taught a workshop
in the previous three years, the process for setting up,
formatting lessons, and so on had changed. We are now
committed to updating our templates and processes no
more than once a year.

3.	 The best templates and platforms in the world won’t make
writing lessons easy. The best we can hope to achieve is
to make it less hard.

8 TODO
We’ve learned a lot, and we’re doing a much better job of reaching
and teaching people than we did three years ago, but there are still
many things we need to improve.

8.1 Long-term assessment
Our biggest challenge is figuring out whether we are actually
helping scientists get more science done, and if so, how, and how
much. 5–8 seem to show that we are, but we have not yet done a
large-scale, long-term follow-up. This is partly because of a lack
of resources, but it is also a genuinely hard problem: no one knows
how to measure the productivity of programmers, or the produc-
tivity of scientists, and putting the two together doesn’t make the
unknowns cancel out.

are only the score; what matters most is how it’s performed. If this
is correct, then collaborative lesson development will only succeed
if it is done as part of what the Japanese call jugyokenkyu (lesson
study): the systematic observation and discussion of lessons by
fellow teachers.

In aid of this, in January 2015 we began running biweekly debrief-
ing sessions for instructors who have recently taught workshops
(see Section 4.1). We are also planning to revise instructor training
to require trainees to watch and reflect on videos of experienced
instructors delivering our lessons. We hope that making this “the
new normal” will encourage even more collaboration on the content
and delivery of our lessons.

7 Example: lesson templates
Section 2.5 mentioned that we have spent more time wrangling
over technical details (“bikeshedding”) than we should have, at
the expense of discussing pedagogy and lesson content. The prime
example of this is probably the way we format our lessons: we have
invested hundreds of hours in debating and implementing various
options. Over the years, we have tried the following:

•	 HTML. People (rightly) complained about editing HTML
tags was annoying, and about maintaining forward/back-
ward links and glossary entries by hand.

•	 XML with a custom translation tool. This had all the dis-
advantages of HTML, with extra overhead of maintaining
the XML-to-HTML translation tool.

•	 A wiki. The tool used didn’t handle concurrent edits
gracefully, and didn’t provide any mechanism for prepub-
lication review. We could live without the former if the
latter worked, but the wiki tools available at the time also
didn’t provide a way to indicate the semantics of specific
regions, e.g., to signal that this part of the lesson was the
objectives, while that was an exercise.

•	 All lessons in one big repository. This was unsatisfactory
for (at least) three reasons:

1.	 Putting everything in one repository made that
repository uncomfortably large to clone.

2.	 If people subscribed to notifications for the reposi-
tory, they were inundated with notices about changes
to lessons they didn’t care about.

	� At the same time, we experimented with using http://jupy-
ter.org/ to author lessons. Notebooks are a wonderful tool
for doing real scientific work, but less well suited to large-
scale collaboration. In particular, while it’s possible for
experienced users to diff and merge Jupyter Notebooks,
it is intimidating and error-prone for newcomers (par-
ticularly in the face of embedded images) (The irony of
telling people not to use “binary” formats like Microsoft
Word for documents because they don’t play nicely with
version control, and then using a format that is almost as
awkward, did not escape our users. . .).

•	� Markdown and HTML in a single GitHub repository
per lesson with a custom build. Markdown files in the

Page 10 of 24

F1000Research 2016, 3:62 Last updated: 17 FEB 2016

http://jupyter.org/
http://jupyter.org/

We therefore still use http://www.nano-editor.org/ as an editor in
class, even though none of our instructors use it for real work. Argu-
ments over this are another example of the bikeshedding discussed
in Section 7: many people who are passionate about programming
are also passionate (some might say “zealous”) about their favorite
editor, and will argue about the relative merits of various choices
at length.

The choice of editor is also an example of expert blind spot. People
who know a subject well often have trouble re-imagining it through
novice eyes, and hence underestimate how difficult “simple” tasks
actually are for newcomers. For example, every reasonably experi-
enced user of the shell knows that an editor can run inside a termi-
nal window, so that a single fixture on the screen can play multiple
roles. This is not obvious to newcomers, who are frequently con-
fused when instructors move back and forth between an editor and
a regular shell prompt in a single window.

8.5 Testing
We believe that software testing is important, but no longer
include it in our core curriculum. The reason is that while it’s
easy to teach the mechanics of using a unit testing framework
(https://en.wikipedia.org/wiki/XUnit), we do not know what tests
to tell learners from dozens of different disciplines to write for
their (very diverse) programs. In addition, while most research
communities have a collective notion of what is “close enough”
for laboratory work (“Physicists worry about decimal places,
astronomers worry about the exponent, and economists are
happy if they’ve got the sign right.”), similar heuristics have not
yet emerged for key aspects of computational work. An attempt
in 2014–15 to collect examples of actual tests from different
domains didn’t achieve critical mass, but we hope to take another
run at doing this.

8.6 Watching vs. doing
We try to make our teaching as interactive as possible, but we still
don’t give learners hands-on exercises as frequently as we should.
We also don’t give them as diverse a range of exercises as we
should. This is simply due to a lack of time: two eight-hour days
are as much as learners’ brains can handle, but not nearly enough to
give them all the practice they need.

There is also a constant tension between having students do real-
istic exercises drawn from actual scientific work-flows, and giving
them tasks that are small and decoupled, so that failures are less
likely and don’t have knock-on effects when they occur. This is
exacerbated by the diversity of learners in the typical workshop.

8.7 Less of a problem
One issue which is less of a problem than it used to be is financial
sustainability. The “host site covers costs” model scales naturally
with the number of workshops, while a growing number of organi-
zations are keen to partner with us, primarily to build local capacity
to run more work-shops when and as needed. While we do not wish
to tempt fate, the Software Carpentry Foundation does seem to be
headed toward financial stability.

Meeting our own standards

One of the reasons we need to do long-term follow-up is
to find out for our own benefit whether we’re teaching the
right things the right way. As just one example, some of us
believe that Subversion is significantly easier for novices
to understand than Git because there are fewer places data
can reside and fewer steps in its normal workflow. Others
believe just as strongly that there is no difference, or that
Git is actually easier to learn. While the large social network
centered around GitHub is a factor in our choice as well, we
would obviously be able to make better decisions if we had
more quantitative data to base them on.

8.2 Too slow and too fast
Our second biggest challenge is the diversity of our learners’ back-
grounds and skill levels. No matter what we teach, and how fast or
how slow we go, 20% or more of the room will be lost, and there’s
a good chance that a different 20% will be bored.

The obvious solution is to split people by level, but if we ask them
how much they know about particular things, they regularly under-
or over-estimate their knowledge. We have therefore developed a
short pre-assessment questionnaire that asks them how easily they
could do a small number of specific tasks. It is useful, in that it
gives instructors some idea of who they’re going to be helping, but
we have done nothing to validate the questions themselves, i.e., to
ensure that respondents are interpreting them the same way that we
are, or that their categorization of respondents corresponds in any
meaningful way to actual proficiency. As mentioned in Section 8.1,
we have been trying for several years to find the support needed to
do rigorous assessment of this and other aspects of our program,
but if funders are reluctant to invest in training, they are doubly
reluctant to invest in measuring its effects.

8.3 “Is it supposed to hurt this much?”
Third, getting software installed is often harder than using it. This
is a hard enough problem for experienced users, but almost by defi-
nition our audience is inexperienced, and our learners don’t (yet)
know about system paths, environment variables, the half-dozen
places configuration files can lurk on a modern system, and so on.
Combine that with two versions of Mac OS X, three of Windows,
and two oddball Linux distributions, and it’s almost inevitable that
every time we introduce a new tool, it won’t work as expected (or at
all) for at least one person in the room. Detailed documentation has
not proven effective: some learners won’t read it (despite repeated
prompting), and no matter how detailed it is, it will be incompre-
hensible to some, and lacking for others.

8.4 Editors
Editing text should be a minor problem, but if you’re standing in
class telling three sets of users, “Now open Notepad++ if you’re
on Windows, or Kate if you’re on Linux, or TextMate if you’re
on a Mac, or whatever you want to use if you’re more advanced”,
and then demonstrate with whichever you have on your laptop
(which looks different from what half of your learners are sitting
in front of), you will cause mass confusion.

Page 11 of 24

F1000Research 2016, 3:62 Last updated: 17 FEB 2016

http://www.nano-editor.org/
https://en.wikipedia.org/wiki/XUnit

F1000Research: Dataset 2. Cumulative Number of Workshop
Attendees over Time, 10.5256/f1000research.3536.d11165527

F1000Research: Dataset 3. Cumulative Number of Qualified
Instructors over Time, 10.5256/f1000research.3536.d11165628

Competing interests
The author is an employee of the Software Carpentry Founda-
tion. Over the years, Software Carpentry has received support
from the organizations listed in Section 2.3 and Table 1, and from
The Mathworks, Enthought Inc., Continuum Analytics, the Sloan
Foundation, and the Mozilla Foundation.

Grant information
Software Carpentry is not currently supported by grants.

Acknowledgements
The author wishes to thank Brent Gorda, who helped create Soft-
ware Carpentry sixteen years ago; the hundreds of people who have
helped organize and teach workshops over the years; and the thou-
sands of people who have taken a few days to learn how to get more
science done in less time, with less pain.

9 Conclusions
To paraphrase William Gibson, the future is already here: it’s just
that the skills needed to implement it aren’t evenly distributed.
A small number of scientists can easily build an application that
scours the web for recently-published data, launch a cloud comput-
ing node to compare it to home-grown data sets, and push the result
to a GitHub account; others are still struggling to free their data
from Excel and figure out which of the nine backup versions of their
paper is the one they sent for publication.

The fact is, it’s hard for scientists to do the cool things their col-
leagues are excited about without basic computing skills, and
impossible for them to know what other new things are possible.
Our ambition is to change that: not just to make scientists more
productive today, but to allow them to be part of the changes that
are transforming science in front of our eyes. If you would like to
help, we’d like to hear from you: please mail us at admin@soft-
ware-carpentry.org.

10 Data availability
F1000Research: Dataset 1. Cumulative Number of Workshops over
Time, 10.5256/f1000research.3536.d11165426

1.	 Cook JD: Moore’s Law Squared. 2012. Viewed July 2013.
Reference Source

2.	 Hannay JE, Langtangen HP, MacLeod C, et al.: How do scientists develop
and use scientific software? In Second International Workshop on Software
Engineering for Computational Science and Engineering (SECSE09). 2009; 1–8.
Publisher Full Text

3.	 Prabhu P, Jablin TB, Raman A, et al.: A survey of the practice of computational
science. In Proceedings of the 24th ACM/IEEE Conference on High Performance
Computing, Networking, Storage and Analysis, 2011.
Publisher Full Text

4.	 Wilson G, Aruliah DA, Brown CT, et al.: Best practices for scientific computing.
PLoS Biol. 2014; 12(1): e1001745.
PubMed Abstract | Publisher Full Text | Free Full Text

5.	 Aranda J: Software Carpentry Assessment Report. 2012.
Reference Source

6.	 Libarkin J: Software Carpentry Workshop Evaluation. 2012.
Reference Source

7.	 Schossau J, Wilson G: Which sustainable software practices do scientists find
most useful? In Proc 2nd Workshop on Sustainable Software for Science: Practice
and Experience. 2014.
Reference Source

8.	 Simperler A, Wilson G: Software carpentry: Get more done in less time. 2015.
Reference Source

9.	 Wilson GV: What should computer scientists teach to physical scientists and
engineers? IEEE Computational Science and Engineering. Summer and Fall, 1996;
3(2): 46–65.
Publisher Full Text

10.	 Wilson G: Where’s the Real Bottleneck in Scientific Computing? Am Sci. 2006;
94(1): 5.
Publisher Full Text

11.	 Wilson G: Software carpentry: getting scientists to write better code by making
them more productive. Comput Sci Eng. 2006; 8(6): 66–69.
Publisher Full Text

12.	 Jordan K: MOOC completion rates: The data. 2015; Viewed July 2013.
Reference Source

13.	 Software Carpentry. Accessed: 2014-02-07.
Reference Source

14.	 Software Carpentry github learning materials repository. Accessed: 2014-02- 07.
Reference Source

15.	 Ambrose SA, Bridges MW, DiPietro M, et al.: How Learning Works: Seven
Research-Based Principles for Smart Teaching. Jossey-Bass, 2010.
Reference Source

16.	 Guzdial M: Why is it so hard to learn to program? In Andy Oram and Greg
Wilson, editors, Making Software: What Really Works, and Why We Believe It.
O’Reilly Media, 2010; 111–124.
Reference Source

17.	 Guzdial M: Exploring hypotheses about media computation. In Proc Ninth
Annual International ACM Conference on International Computing Education
Research. ICER’13, 2013; 19–26.
Publisher Full Text

18.	 Hazzan O, Lapidot T, Ragonis N: Guide to Teaching Computer Science: An
Activity-Based Approach. Springer, 2011.
Publisher Full Text

19.	 Porter L, Guzdial M, McDowell C, et al.: Success in introductory programming:
What works? Communications of the ACM. 2013; 56(8): 34–36.
Publisher Full Text

20.	 Sorva J: Visual Program Simulation in Introductory Programming Education.
PhD thesis, Aalto University, 2012.
Reference Source

21.	 Women in computing: the gender gap. Accessed: 2014-02-16.
Reference Source

22.	 Fincher S, Tenenberg J: Warren’s question. In Proc Third International Computing
Education Research Workshop. Association for Computing Machinery, 2007; 182–196.
Publisher Full Text

23.	 Fincher S, Richards B, Finlay J, et al.: Stories of change: How educators change
their practice. In Proc ASEE/IEEE Frontiers in Education. IEEE, 2012; 185–190.
Publisher Full Text

24.	 Stross R: What has driven women out of computer science? New York Times,
2008; Accessed: 2014-02-07.
Reference Source

25.	 Software Carpentry instructor training. Accessed: 2014-02-07.
Reference Source

26.	 Wilson G: Dataset 1 in: Software Carpentry: lessons learned. F1000Research. 2016.
Data Source

27.	 Wilson G: Dataset 2 in: Software Carpentry: lessons learned. F1000Research. 2016.
Data Source

28.	 Wilson G: Dataset 3 in: Software Carpentry: lessons learned. F1000Research. 2016.
Data Source

References

Page 12 of 24

F1000Research 2016, 3:62 Last updated: 17 FEB 2016

http://dx.doi.org/10.5256/f1000research.3536.d111655
http://dx.doi.org/10.5256/f1000research.3536.d111656
mailto:admin@software-carpentry.org
mailto:admin@software-carpentry.org
http://dx.doi.org/10.5256/f1000research.3536.d111654
http://www.johndcook.com/blog/2012/01/01/moores-law-squared/
http://dx.doi.org/10.1109/SECSE.2009.5069155
http://dx.doi.org/10.1145/2063348.2063374
http://www.ncbi.nlm.nih.gov/pubmed/24415924
http://dx.doi.org/10.1371/journal.pbio.1001745
http://www.ncbi.nlm.nih.gov/pmc/articles/3886731
https://software-carpentry.org/files/papers/aranda-assessment-2012-07.pdf
http://software-carpentry.org/files/papers/libarkin-assessment-report-2012-06.pdf
http://arxiv.org/abs/1407.6220
http://arxiv.org/abs/1506.02575
http://dx.doi.org/10.1109/99.503313
http://dx.doi.org/10.1511/2006.1.5
http://dx.doi.org/10.1109/MCSE.2006.122
http://www.katyjordan.com/MOOCproject.html
http://software-carpentry.org
http://github.com/swcarpentry/bc
http://as.wiley.com/WileyCDA/WileyTitle/productCd-0470484101.html
http://my.safaribooksonline.com/book/software-engineering-and-development/9780596808310/general-principles-of-searching-for-and-using-evidence/why_is_it_so_hard_to_learn_to_programque
http://dx.doi.org/10.1145/2493394.2493397
http://dx.doi.org/10.1007/978-0-85729-443-2
http://dx.doi.org/10.1145/2492007.2492020
http://lib.tkk.fi/Diss/2012/isbn9789526046266/isbn9789526046266.pdf
http://en.wikipedia.org/wiki/Women_in_computing#The_Gender_Gap
http://dx.doi.org/10.1145/1288580.1288588
http://dx.doi.org/10.1109/FIE.2012.6462317
http://www.nytimes.com/2008/11/16/business/16digi.html?_r=0
http://teaching.software-carpentry.org
http://dx.doi.org/10.5256/f1000research.3536.d111654
http://dx.doi.org/10.5256/f1000research.3536.d111655
http://dx.doi.org/10.5256/f1000research.3536.d111656

F1000Research

1.

2.

Open Peer Review

 Current Referee Status:

Version 1

 24 March 2014Referee Report

doi:10.5256/f1000research.3787.r3816

 Hilmar Lapp
National Evolutionary Synthesis Center (NESCent), Durham, NC, USA

The article describes some of the origins, driving motivations and lessons learned over the more than 15
years of iterative improvements and reboots of Software Carpentry, a brand of (meanwhile) travelling
workshops teaching fundamental best practices in software engineering to programming scientists.

Software Carpentry has received wide acclaim, and helps fill critical gaps in a time when creating and
using computational tools is becoming indispensable to increasingly many scientific fields. As such, the
topic is of broad interest without question. The text is well-written, and in most places well argued. My only
two overarching critiques are (1) that the author in some places seems to conflate cause and effect; and
(2) that in some places I feel the reader is left hanging with a too little information. However, none of these
rise to the level of calling into question the validity of the overall conclusions, and thus don't exceed what
one might call "minor revisions".

Since this is an open review, I have chosen to record my detailed comments as public text annotations,
using the Hypothes.is (http://hypothes.is) platform, with a transcription also provided below. A PDF

 of the comments is also available.version
 The Hypothes.is version of these comments can be accessed at this URL:

https://hypothes.is/stream#?user=hlapp&uri=http:%2F%2Ff1000research.com%2Farticles%2F3-62%2Fv1

Unfortunately, the ordering of the comments on Hypothes.is appears to be in reverse chronological order
(most recent first), and the comments should therefore be read last to first to align with reading the text
start to end.

Any comments or replies to these comments should be made using the ‘Add yours’F1000Research
option but could also be added to Hypothes.is directly if desired.

Introduction
Paragraph 1: “hardware and algorithms are only two sides of the iron triangle of programming”

Is there a reference for this form of the Iron Triangle? Googling the phrase only turns up the
well-known project management Iron Triangle, and its adaptation to software projects. The latter
has Resources, Scope, and Time at its corners, not hardware, algorithms, and programming.

Paragraph 1: “desktop majority”

Page 13 of 24

F1000Research 2016, 3:62 Last updated: 17 FEB 2016

http://dx.doi.org/10.5256/f1000research.3787.r3816
http://cdn.f1000r.com.s3.amazonaws.com/supplementary/3536/99457538-813a-4792-9193-63a991889627.pdf
http://cdn.f1000r.com.s3.amazonaws.com/supplementary/3536/99457538-813a-4792-9193-63a991889627.pdf
https://hypothes.is/stream#?user=hlapp&uri=http:%2F%2Ff1000research.com%2Farticles%2F3-62%2Fv1

F1000Research

1.

2.

3.

4.

5.

1.

2.

3.

1.

Paragraph 1: “desktop majority”

Do you mean the complement to those doing HPC? The phrase strikes me as needlessly cryptic.
And are you sure that scientists developing HPC software are exempt from the trend you describe?

Paragraph 2: “rarely if ever shown how to design a maintainable program in a systematic way”

Are they not in fact taught, even if only indirectly, that programs are typically not revisited again
once passed on (to the course instructor, for example), and hence thinking about maintainability is
wasted effort?

Paragraph 3: “learning, and applying”

Assuming that learning binds to at least some of what we taught as well, the comma is extraneous.
Or add a comma after “and applying”.

Paragraph 4: “many researchers still find it hard to apply what we teach”

Researchers at-large, or researchers who participated in a Software Carpentry workshop?
From red to green

Version 1: Red light

Paragraph 1: “i.e., to parallelize complex programs”

This seems more an example to me than a restatement of run before they could walk. Thus, this
should be “e.g.” (or spelled out “for example”).

Paragraph 2: “(then director of the Advanced Computing Laboratory at Los Alamos National
Laboratory)”

Change parentheses to comma. The parenthetical phrase is important to make sense of the
sentence. (And if similar contextual information can be given about Brent Gorda, i.e., information
that helps to understand why he was invited, I suggest that be added too, as his current affiliation
fails to explain that.)

Paragraph 2: “In response, John Reynders (then director of the Advanced Computing Laboratory
at Los Alamos National Laboratory) invited the author and Brent Gorda (now at Intel) to teach a
week-long course on these topics to LANL staff. The course ran for the first time in July 1998, and
was repeated nine times over the next four years.”

I suggest that the author highlights the major ways in which these courses differ from the SwC
courses run today. As written now, deducing that from the two lessons learned is left as an
exercise to the reader, and only those already familiar with SwC will know that indeed today's SwC
workshops do differ in these ways.

Versions 2 and 3: Another red light

Paragraph 2: “(even though a significant minority of their students, particularly those coming from

Page 14 of 24

F1000Research 2016, 3:62 Last updated: 17 FEB 2016

F1000Research

1.

2.

3.

4.

5.

6.

Paragraph 2: “(even though a significant minority of their students, particularly those coming from
non-CS backgrounds, have no more experience of practical software development than the
average physicist”

Remove parentheses.

Paragraph 2: “In the absence of an institutional mechanism to offer credit courses at some
inter-departmental level, this course, like many other interdisciplinary courses, fell between two
stools.”

Perhaps this would be beyond the scope of the paper as a commentary, but it would be interesting
to see whether this is then different at decidedly interdisciplinary programs, for example programs
interfacing computational biology / computer science / math.

Paragraph 3: “It works too well to be interesting”

Based on context, “it” would be the SwC workshop or material. I suggest to reword so it is clear that
it actually refers to the practices and tools being taught by SwC.

Paragraph 3: “As long as universities reward research first, and supply teaching last, it is simply not
in most computer scientists own best interests to offer this kind of course.”

If this is the main driver behind this kind of course not finding interest at university CS programs, is
the situation then different at teaching-focused schools, such as small liberal arts colleges? There
are small liberal arts colleges with strong CS programs; have they indeed been more welcoming to
adopting SwC into their curricula?

Paragraph 4: “This is partly because educators’ preferred file formats (Word, PowerPoint, and
PDF) can’t be handled gracefully by existing version control systems, but more importantly, there
simply isn’t a “culture of contribution” in education for projects like Software Carpentry to build on”

I'm not convinced that one isn't mostly or entirely a consequence of the other. Open source and
collaborative development also was far less widespread in scientific software development before
many of the barriers to that were significantly reduced by distributed version control such as Git,
and usability and social coding focused resources such as Github. If the tools and file formats that
are most widely used are simply refractory to collaboration, it's not a surprise if then a culture of
collaboration is rare.

Paragraph 7: “The sweet spot for this kind of training is therefore the first two or three years of
graduate school. At that point, students have time (at least, more time than they’ll have once
they’re faculty) and real problems of their own that they want to solve.”

Perhaps it's primarily the “real problems of their own” that provide the motivation for having the time
(to learn about addressing them). I.e., percentage-wise, how many students does SwC get today
who take the course primarily because they have time, and who do not yet have real problems of
their own for which they hope to learn solutions?

More importantly perhaps, does this not also point out a path for justifying the inclusion of
SwC-inspired teaching units into undergraduate CS curricula? While for some (or most?) academic

research career paths the relevance of version control mastery is perhaps less obvious, it's a

Page 15 of 24

F1000Research 2016, 3:62 Last updated: 17 FEB 2016

F1000Research

6.

1.

2.

3.

4.

5.

research career paths the relevance of version control mastery is perhaps less obvious, it's a
qualification nearly all of industry ask of CS graduates applying for a software engineer position.

Version 4: orange light

Paragraph 1: “The author rebooted Software Carpentry in May 2010 with support from Indiana
University, Michigan State University, Microsoft, MITACS, Queen Mary University of London,
Scimatic, SciNet, SHARCNet, and the UK Met Office.”

The backstory to what motivated (or necessitated?) the large consortium of funders is missing
here. However, given the last paragraph in this section, it seems there would be interesting aspects
of it that would help make setting up the argument. Does the large consortium reflect primarily wide
buy-in to SwC's utility, or primarily the difficulty of obtaining enough funding from any one institution
or partner? The last paragraph suggests it's the latter, but it's not clear.

Paragraph 1: “MOOC”

Spell out at first use.

Paragraph 2: “Open access publishing, crowd sourcing, and dozens of other innovations had
convinced scientists that knowing how to program was now as important to doing science as
knowing how to do statistics.”

Is there evidence or references for the factors the author enumerates constituting the major driving
causes? More specifically, the list is conspicuously missing the explosion of data that had swept,
and has continued to sweep into almost every scientific discipline. Data richness is enormously
powerful for science, yet wrestling insight from it at this scale invariably and pervasively requires
computational processing. Maybe this is part of the “dozens of other innovations”, but I would still
argue that the data deluge has constituted a primary rather than a marginal driver of this landscape
change.

Paragraph 4: “Most importantly, the MOOC format didn’t work”

I think it's worth to qualify this statement in respect to the goals. As the paragraph goes on, it could
be said that In some definition the MOOC format has worked (for example, compared to retention
and completion rates of other MOOCs); the failure that the author reports presumably means
chiefly that the goals laid out for a SwC course weren't met by the MOOC format.

Paragraph 5: “The biggest take-away from this round was the need come up with a scalable,
sustainable model. One instructor simply can’t reach enough people, and cobbling together
funding from half a dozen different sources every twelve to eighteen months is a high-risk
approach.”

For readers who aren't already fully on board with this, It would help to better set up the argument.
Why is scaling up the model desirable or necessary? What is enough people? Couldn't funding
also come from a single or few sources? Many courses are sustained by student tuition; how would
this likely not work for SwC?

Page 16 of 24

F1000Research 2016, 3:62 Last updated: 17 FEB 2016

F1000Research

1.

2.

3.

4.

5.

6.

7.

8.

Version 5: green light

Paragraph 1 ”“and backing from the Mozilla Foundation

The difference in wording suggests that the Mozilla Foundation's backing didn't come in the form of
a grant. Can it be spelled out (at least broadly) what that support consisted of?

Paragraph 1: “This time, the model was two-day intensive workshops”

I'm curious as to why 2 days. The lessons learned stated earlier seem to say that attention drops
after 3 days, not 2 days. Why was the decision made to shorten to 2 days, not 3 days?

Paragraph 1: ” “The Hacker Within

Is there no link or other reference available?

Paragraph 3: “Switching to a “host site covers costs” model was equally important: funding is still
needed for the coordinator positions (the author and two part-time administrative assistants at
Mozilla, and part of one staff member’s time at the Software Sustainability Institute in the UK), but
our other costs now take care of themselves.”

I'd find it really useful to spell this out a little more. What are “our other costs”? Instructor travel and
expenses, room rental? What tasks do the coordinators perform, how does this scale? Or in other
words, presumably there is a division between costs of operating that benefit from economies of
scale, and those that do not. More insight into this division would be quite helpful as a lesson
learned.

Paragraph 4: “have grown steadily (Figure 1 and Figure 2).”

The figures suggest a tapering off in the recent past. Is this more likely a fluke due to limited or
censored data, or is there a trend showing?

Figure 2 : “Enrolment”

Typo (one instead of two 'l')

Description of Figshare Data: “Hopefully these two effects more or less cancel out and should not
detract from the overall trend displayed.”

Hope is nice but not a good basis on which to base scientific conclusions. Do you have evidence
that suggests that neither fraction of people is significant with respect to those enrolled and
attending both days? Evidence that both fractions of people has stayed relatively constant over
time, and not changed more recently?

Paragraph 5: “80–90% of attendees typically report”

What does typically mean? 80-90% of all SwC enrolled students, or on average 80-90% of those
enrolled in a workshop? I.e., how much variance is there between workshops?

Page 17 of 24

F1000Research 2016, 3:62 Last updated: 17 FEB 2016

F1000Research

1.

2.

3.

4.

5.

1.

What we do

Paragraph 5: “While some people feel that using R instead of Python is like using feet and pounds
instead of the metric system”

I have heard concerns and objections some people have with R's syntax and way of doing things.
But every language (including Python) has its detractors, and I don't think the particular concerns
with R are necessarily widely known let alone understood. So I would suggest to either delete this
clause (is it really needed for the argument?), or if chosen to be left in place, to substantiate it, at
least by giving a reference to a fuller discussion of R's problems.

Paragraph 5: “now that we have enough instructors to be able to specialize”

It's probably not just a question of having instructors, but also of having demand for (and thus
acceptance of) the SwC curriculum as useful in increasingly many disciplinary areas.

Paragraph 6: “with the best”
Insert "even" before “with”.

Paragraph 7: “As this is usually several times more than a small registration fee would bring in, we
usually choose the higher no-show rate as the lesser evil.”

The biggest problem of a significant rate of no-shows is probably the fact that due to the space
limitations other students who would have and benefitted from the course had to be denied
because of the no-shows taking the space away. Have other possibilities to deter no-shows been
explored (and if so, how effective have they been found)?

If the no-show rate is somewhat predictable (and it sounds like it is), then wait-listed students could
be told to show up anyway on the day of the course, because there would likely be enough
no-shows to make room for them. Has this been tried, and to what extent does it work?

Paragraph 9: “What does require permission is use of our name and logo, both of which are
trademarked. We are happy to give such permission if we have certified the instructor and have a
chance to double-check the content, but we do want a chance to check: we have had instances of
people calling something “Software Carpentry” when it had nothing to do with what we usually
teach. We’ve worked hard to create material that actually helps scientists, and to build some name
recognition around it, and we’d like to make sure our name continues to mean something.”

This whole paragraph doesn't mention the words "brand", "brand recognition", and "brand
reputation"; yet it is essentially about those concepts, isn't it? Why not say it directly?

Small things add up

Use what we teach

Paragraph 1:“The (considerable) downside is that it can be quite difficult for newcomers to
contribute material; we are therefore working to streamline that process.”

This needs some qualification to fully make sense as following from the preceding sentence. If the

Page 18 of 24

F1000Research 2016, 3:62 Last updated: 17 FEB 2016

F1000Research

1.

1.

2.

1.

1.

1.

This needs some qualification to fully make sense as following from the preceding sentence. If the
tools and approaches SwC teaches are good ones that "work", and SwC uses those tools and
approaches itself, how can this be a downside, presuming that those able to contribute material are
in fact familiar with those tools and approaches. I can imagine some ways in which this can still be
a downside, but for clarity this should be spelled out better.

Keep experimenting

Paragraph 3: “DiRAC”

Spell out. Also, how about a URL?

Paragraph 5: “Many of our instructors also teach regular university courses, and several of them
are now using part or all of our material as the first few lectures in them.”

Isn't this somewhat contradicting some lessons learned stated earlier, which seemed to say that for
several reasons the SwC curriculum faces impossibly high barriers for integration into university
curricula, at least in the current environment. If contrary to expectation this has now become
possible, can something be learned from the cases where it has been successfully integrated?

TODO

Long-term assessment

Paragraph 1: “no one knows how to measure the productivity of programmers, or the productivity of
scientists”

I think this assertion needs better qualification to be really justified. Obviously, several ways to
assess programmer productivity, and also scientist productivity, exist. Hiring and tenure
committees regularly assess productivity of scientists. Arguably, the ways this is usually done
suffers from various problems such as failing to encompass the full spectrum of products resulting
from a scientist's work. Perhaps the author means that it is some of these shortcomings of current
productivity assessment methods that effectively prevent measuring the productivity impact of
SwC's teachings, but that needs to be spelled out better.

“Is it supposed to hurt this much?”

Paragraph 2:“naive”

Is this meant to be "native"?

Teaching on the web

Paragraph 1: “The fact that this is also true of most high-profile MOOCs is little comfort.”

If your goal is a high rate of retention and completion, that is. However, widening reach could also
be a worthwhile goal. If a single MOOC reaches 10,000 students instead of 800 students reached
by 20 physical SwC workshops, even a completion rate of only 10% will still have taught more
students with the single MOOC than with the 20 physical workshops. MOOCs clearly aren't a
panacea, and they may indeed be ill-suited to the learning objectives of SwC, but that and why this

is so needs a little more depth to be convincing.

Page 19 of 24

F1000Research 2016, 3:62 Last updated: 17 FEB 2016

F1000Research

1.

1.

2.

1.

1.

2.

1.

1.

is so needs a little more depth to be convincing.

What vs. how
Paragraph 2: “don’t as good a job”

Insert "do" after “don't”.

Paragraph 2: “xUnit-style framework”

I'm embarrassed to ask what's an xUnit style framework. Spell out what that is, and/or add a
reference or URL?

Standardization vs. customization

Paragraph 1: “However, we do need to be more systematic about varying our content on purpose
rather than by accident.”

As a reader, I feel left hanging by the section ending with this statement. Are there ideas about how
this could be done, and to begin with, what were some of the problems encountered with the less
systematic approach being practiced now? (The preceding text seems to only cite advantages.)

Watching vs. doing

Paragraph 1: “We also don’t give them as diverse a range of exercises as we should, and those
that we do give are often at the wrong level.”

 How do you know that this is the case? From feedback alone, or are there other kinds of
observations or evidence?

Paragraph 2: “though we hope that will diminish as we organize and recruit along disciplinary lines
instead of geographically”

Aren't you arguing above that diversity of backgrounds and starting skills is a constant challenge? It
didn't seem from earlier arguments in the text that simply recruiting along a uniform discipline will
address this problem.

Better teaching practices

Paragraph 1: “We do our best to cover these ideas in our instructor training program, but are less
good about actually applying them in our workshops.”

Is there some insight available into why instructors find it difficult to apply what they have been
taught? Is it the imparting of these ideas that needs improvement, or are the ideas not as
applicable in SwC as they were thought to be, or is there simply heterogeneity in that some ideas
are much easier to apply than others? If the latter, which ones fall into which category?

Conclusions

Paragraph 1: “To paraphrase William Gibson”

Page 20 of 24

F1000Research 2016, 3:62 Last updated: 17 FEB 2016

F1000Research

1. Paragraph 1: “To paraphrase William Gibson”

I notice that it's not clear to what exact piece or event to source this. Perhaps still link to the William
Gibson Wikiquote page, which includes the quote and its provenance?

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 Greg Wilson is one of my collaborators on Data Carpentry, a fledgling offshoot ofCompeting Interests:
Software Carpentry aiming to teach best practices for data management.

 26 February 2014Referee Report

doi:10.5256/f1000research.3787.r3815

 Philip Guo
Department of Computer Science, University of Rochester, Rochester, NY, USA

This article is a retrospective on the past 15 years of the author leading the Software Carpentry effort to
educate scientists about the practical value of computational tools. It also describes a set of instructional
practices that have worked well (and some that have not worked so well) in this setting. It concludes with
ongoing and future work to scale up Software Carpentry in light of large variations in instructor and
student backgrounds, and continual changes in modern computational tools.

This article is a great fit for F1000 due to the topic's relevance to researchers in life sciences (and across
a diverse array of science fields), and to the author's cogent firsthand accounts of his experiences and
reflections on a subject matter which he is well-suited to discuss.

My main high-level comment is that the language is colloquial in many parts of this article, with lots of
asides enclosed (in parentheses). That is probably fine for an opinion-based article, and it makes the
writing more personal and approachable. But the author should be aware that this is how the article
appears to a first-time reader.

Here are some more detailed comments, none of which are pressing:
"From red to green" -- it took me a while to understand the "red", "orange", "green" light analogy the
author was making in this section. That seems to be culturally specific. (I don't think I've seen an
orange traffic light.)

"Versions 2 and 3: Another red light" - I didn't understand why these were two separate versions.
Maybe it's simpler just to call this Version 2 and update the subsequent version numbers?

"It works too well to be interesting" -- This blurb felt a bit harsh toward CS professors. It makes it
sound like they teach only topics that lead to new publishable research. In my experience, teaching
and research are fairly decoupled, so professors have no qualms about teaching materials from,
say, 30-year-old compilers or databases textbooks, which are obviously not leading to new
research. Perhaps a more likely explanation, which the author points out later in the article, is that
there simply isn't room in CS curricula to offer these sorts of Software Carpentry-like materials, and
nobody vouches strongly enough for them.

Typo in caption: "Enrolment figures" -> "Enrollment figures"

Page 21 of 24

F1000Research 2016, 3:62 Last updated: 17 FEB 2016

http://dx.doi.org/10.5256/f1000research.3787.r3815

F1000Research

Typo in caption: "Enrolment figures" -> "Enrollment figures"

"What we do" - "Day 1 a.m.", etc. -- that's hard to parse. I thought the author meant "1am" like they
were offering a class at 1 in the morning. Same with "1pm", "2am", "2pm". "Day 1 - morning" would
be clearer.

"during the practical" - I'm not familiar with this phrase. Is that a typo, or a figure of speech?

"It's a refreshing change from teaching undergraduate calculus." -- would Software Carpentry
instructors ordinarily teach calculus? Seems more like they would be teaching physics or
programming or something.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 I have served as a volunteer helper in a Software Carpentry course. I was not paidCompeting Interests:
for my participation, nor do I have any financial relationship with Software Carpentry.

 24 February 2014Referee Report

doi:10.5256/f1000research.3787.r3814

 Juha Sorva
Department of Computer Science, Aalto University, Espoo, Finland

This is an insightful and well-written commentary on a timely topic. The article documents the past and
present practices of Software Carpentry - a project for teaching scientists about computing - and reflects
on the project's successes and failures. In doing so, it provides concrete examples of the teaching
practices used as well as those discarded. Moreover, the article helps the reader to understand how
teaching scientists to about computing is different from teaching computer science majors - a matter that
is central to the efforts of Software Carpentry and to the interests of the growing numbers of scientists who
need computing skill to work efficiently.

The commentary is well grounded in evidence from the research literature as well as the author's lengthy
experience with the project. The achievements and challenges of Software Carpentry are discussed
realistically and critically.

: There is only so much you can learn in two days (the length of SoftwareAdditional comment
Carpentry's current workshops), and whatever you learn in that time is unlikely by itself to change your
research practices dramatically. What would be interesting to know in the future is whether and how the
workshop participants go about building their computing skills after attending a workshop.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 I have participated in a project (a collaboratively authored book on learning) led byCompeting Interests:
the author of the commentary.

Page 22 of 24

F1000Research 2016, 3:62 Last updated: 17 FEB 2016

http://dx.doi.org/10.5256/f1000research.3787.r3814

F1000Research

Discuss this Article
Version 2

Reader Comment 16 Feb 2016
, University of Otago, New ZealandDavid Eyers

This comment relates to presentation glitches and not the content of the paper. I've checked that the
issues are present in version 2 (some others were fixed going from version 1 to version 2). The page
numbers shown are with respect to the V2 PDF.

Page 8: within "4.2 Live coding" "instructors’s mistakes" should be "instructors’ mistakes"
Page 8: "Some instructors use VPS over SSH"—what is the term VPS referring to? It only occurs
once in the document. Virtual private servers?
Page 8: "This solve the installation issues" should be "This solves the installation issues"
Page 10: "People (rightly) complained about editing HTML tags was annoying"—this does not
parse comfortably.

As a minor point, there's a mix between use of dashes and approximation of dashes with hyphens
(possibly due to a mix of authorship tools and/or authors?). For example, "University of Wisconsin -
Madison" (p3) and "2-4 hours/week" (p9) both non-ideal, versus "This is great—except that" (p10) and
"2014–15" (p11), which are typeset more appropriately.

 No competing interests were disclosed.Competing Interests:

Version 1

Reader Comment () 29 Dec 2014F1000Research Advisory Board Member
, Department of Psychiatry, Washington University in St Louis, USAKevin J Black

"A small number of scientists can easily build an application that scours the web for recently-published
data, launch a cloud computing node to compare it to home-grown data sets, and push the result to a
GitHub account; others are still struggling to free their data from Excel and figure out which of the nine
backup versions of their paper is the gone they sent for publication."

This quote is not only spot-on, it is brilliantly phrased. I would add that software design knowledge is spotty
within as well as across scientists. I'm an example. I do brain imaging research. On the one hand, I took a
numerical methods class in college, I have written programs over the years in FORTRAN, Smalltalk,
Pascal, and C, and have written and used shell scripts (csh) a good bit; I have tried to implement principles
from object-oriented programming and "design by contract," I understand what a relational database is and
have made some in Access, I have a Github account, and I've tried to do things at work with R and Python.
But on the other hand, the pretest in this article shows that I can't put most of those together usefully.

I tripped across the Software Carpentry web site a month or two ago, and I thought it was the best short

introduction ever to show why the concepts they teach are so important for creating useful (reliable,

Page 23 of 24

F1000Research 2016, 3:62 Last updated: 17 FEB 2016

F1000Research

introduction ever to show why the concepts they teach are so important for creating useful (reliable,
reusable, pragmatic) software. Thank you for this work!

 None.Competing Interests:

Page 24 of 24

F1000Research 2016, 3:62 Last updated: 17 FEB 2016

